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Row or column stochastic quantum similarity matrices (SM) are by construction non-
symmetric square arrays. Thus, although representing a source of partial order within quantum
object (QO) sets, they are not so easily connected to QO descriptors as the parent symmet-
ric quantum SM do. In this paper, the eigensystems of such stochastic SM are analyzed and
connected to the original quantum SM eigenvalues and eigenvectors. Simple relationships are
found, providing row or column stochastic quantum SM with the power to be used as QO
descriptors in both classical or quantum QSAR frameworks.
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1. Introduction

Recently, Klein described in detail the potential uses ofpartially ordered sets
(posets) in the field of theoretical chemistry [1]. Partial order within a set arises when
some object descriptor, associated to the elements of a given set, is not symmetric with
respect to the involved object order. An appropriate example of such an occurrence can
be linked to the matrices arising from a non-symmetric topological similarity measure,
proposed by Mezey [2]. In this particular case the topological measureT (A,B), involv-
ing two objectsA andB, was defined in such a way as to yield a different value when
computed in reverse order, that is,T (A,B) �= T (B,A).

At the same time, in the last years, it has been demonstrated in our laboratory that
quantum similarity measures(QSM) constitute a universal unbiased source ofquantum
object (QO) descriptors (see for more details [3–8]). However, the QSMZ(A,B), in-
volving two QOA andB, are symmetric measures, that is,Z(A,B) = Z(B,A), and
consequently, the associated quantumsimilarity matrices(SM) generated in such man-
ner become uninteresting for poset construction overQO sets(QOS). See appendix A,
[9–13] and recent reviews [14–19] for more details on the employed definitions in this
paragraph.

On the other hand, the structure and construction algorithms leading to the pre-
cise definition of quantumstochastic SM(SSM) [20] have been recently discussed. Due
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to the fact that such SSM are non-symmetric, they seem to constitute a potential miss-
ing link between QSM and poset definition over QOS. Alternatively, it appears at first
sight difficult to promote such non-symmetric SSM as candidates to a QO descriptor
source, within aquantitative structure–activity relationships(QSAR) framework. This
is so, because the QSAR dimension reduction problem is based on the descriptor matrix
eigenvectors [21,22], and usually non-symmetric matrix eigensystems are not so easy to
handle as the symmetric counterparts: see, for example, [23,24].

Taking into account all these considerations, the present paper will show in a first
place, after properly and briefly defining QSM and SM, how quantum SM can be triv-
ially transformed into row or column SSM. Then, once the quantum SSM structure is
set, the eigensystems of such matrices will be studied and compared. Next, it will be
discussed how a simple procedure interrelate the eigenvalues and eigenvectors of the
involved stochastic matrix structures with a new geometrical point of view, in order to
connect QO structure and properties. Such a procedure has been recently namedquan-
tum QSAR(QQSAR) [20]. Due to the present study, a novel set of QO descriptors,
based on quantum similarity concepts, could be taken into account and used in QSAR
modeling.

2. Quantum similarity measures

The first precise definition of QSM has been proposed several years ago (see, e.g.,
[25,26]). Actually, any kind of QSM can be considered made by an application of the
direct product of several QO tags, belonging to some QOS, into the set of the positive
definite real numbersR+; see [14–17] and also appendix A.

In the simplest way, a QSM may be defined by means of two QO{ωA;ωB}, using
their tags, constructed in terms of quantum-mechanicaldensity functions(DF) {ρA;ρB}.
Both DF tags can be also connected by means of a chosenpositive definite(PD) opera-
tor
, through the volume integral

zAB(
) =
∫∫

ρA(r1)
(r1; r2)ρB(r2)dr1 dr2. (1)

Then, for instance, substituting the positive definite operator
 in equation (1), by the
Dirac’s delta functionδ(r1− r2), then anoverlap-likeQSM is obtained:

zAB =
∫
ρA(r)ρB(r)dr. (2)

Similarly, when a Coulomb operator
(r1; r2) = |r1−r2|−1 is employed in equation (1)
aCoulomb-likeQSM appears connected with the integral form:

zAB
(
r−1) = ∫∫ ρA(r1)|r1− r2|−1ρB(r2)dr1 dr2. (3)
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A QSMzAA, involving only a unique QO tag, is usually called aQuantum Self-Similarity
Measure(QSSM):

zAA(
) =
∫∫

ρA(r1)
(r1; r2)ρA(r2)dr1 dr2. (4)

QSM, defined in this way, can be interpreted as generalized volumes and they can be
easily linked with quantum-mechanical expectation values [12], see also appendix C
for a discussion on this crucial point. Many alternative QSM definitions are possible,
and throughout its historical development, quantum similarity has become an extremely
flexible and general theoretical tool [18].

3. Quantum similarity matrices

Given a well-designed QOS, the collection of QSM involving all the QO pairs can
be ordered in the form of a symmetric matrix:Z = {zIJ } andZ = ZT. Such an ordered
QSM array is called aSimilarity Matrix (SM). Any SM can be partitioned in terms of its
columns (or rows)1, that is:

Z = (z1, z2, . . . , zN) = {zI }, (5)

where every column corresponds to a precise QO, belonging to the studied QOS [11,14–
18,25,26].

Thus, ifωA is a given QO andρA is associated to its DF tag, then the corresponding
column of the SMzA, is in connection to theωA QO DF tag, and can be consequently
considered as adiscreteQO representation. This situation can be symbolically written
as

ωA ↔ ρA ↔ zA;
or, in a better way, employing the tagged set notation, as

(ωA;ρA)↔ (ωA; zA),
taking into account the QO tagged set structure, customarily made by the ordered pairs
(quantum system; DF).

In this manner, the QSM collection constructed by means of the QSM integrals,
involving any chosenI th QO with respect toall the elements of the QOS, defines an
N-dimensional discretetag set{zI }, N being the cardinality of the QOS, which can
substitute the former infinite-dimensional DF tags.

A new discrete QOS(DQOS), of the same cardinality as the original QOS, can be
constructed in this way: thetagged setobjects are the same quantum systems of the QOS

1 The most common matrix-to-hypermatrix transformation procedure is performed by means of a column
matrix partition. However, here, later on, a row matrix transformation shall be used, demanding a row
partition. At the moment to distinguish which one of the two possible vector partition forms is adopted,
then bra–ket formalism will be used to note the difference between row and column partition vector forms.
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as before, but the columns or rows of the SM substitute the initial DF tag set elements by
appropriate discrete vectors. The DQOS discrete tags set naturally defines a polyhedron
in N-dimensional space. The DQOS tag set, for obvious reasons, can be called aQO
point cloud[19].

4. Stochastic quantum similarity matrices

The computation of SM over a QOS providing a new DQOS structure, as discussed
above, produces a set ofN-dimensional tags, which can be associated to the original
infinite-dimensional DF tags. Despite the strict positive definiteness of the SM column
set elements,{zI }, which appear as a consequence of the QSM definition presented in
equation (1), the connection between theN-dimensional tags and the DF is not imme-
diately made evident. However, it can be easily deduced after taking into account the
nature of the involved DF tags [14–19,25,26], which can be considered in turn either as
positive definite functions or projection operators.

The present section will describe a SM transformation, producing a new collec-
tion of N-dimensional tags, which are characterized with such a structure that they can
be looked at as forming a discrete probability distribution. This last possibility shall
be considered as an expected plausible outcome of QSM theory, due to the quantum-
mechanical origin of all the QO tags employed so far.

4.1. Stochastic transformation of quantum similarity matrices

N-dimensional quantum SM columns or rows,{zI }, or, simply, their elements,
are made, by construction and in computational practice, of positive definite rational
numbers, although being theoretically real. This characteristic property can be resumed
by saying that the set of the SM columns or rows, describing the QO point cloud, is
a vector subset belonging to aVector Semispace(VSS): {zI } ⊂ VN(R+). VSS are
vector spaces, which lack of reciprocal elements or negative scalars. See [10,11] and
appendix A for more details. It must be noticed, for example, that the QO point cloud,
defined by the DQOS tag set elements and commented a few lines ago in the previous
section, defines a characteristic set of points in someN-dimensional VSS, because due
to the nature of the QSM definition all their components are made by strictly positive
numbers.

The VSS structure in general and, in particular, the construction of SM precludes
that, in any case, the sum of every SM row (or column) elements is a positive real
number, that is:

∀I 〈zI 〉 =
∑
J

zIJ ∈ R+.

This positive definiteness of the elements of any SM can be only assured by the ap-
propriate definition and construction of the QSM. It must be stressed, as it has been done
in all previous work on the subject, that in the QSM definition (1) and the following par-
ticular QSM construction, the active involved DF must be convex (see definition A.4 in
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appendix A); that is, everywhere positive definite and integrable, and the present weight
operators should be positive definite as well.

These above-commented row (or column) SM sums can be used as row (or column)
scale factors in order to trivially obtain a new row (or column) set belonging to the same
VSS, that is,sI = 〈zI 〉−1zI , but possessing afterwards the imposed form of a discrete
probability distribution. That is, the following equalities can be easily written:

〈sI 〉 =
〈〈zI 〉−1zI

〉 = 〈zI 〉−1〈zI 〉 = 1.

The set ofN rows S = {sI }, ordered forming a square(N × N) matrix S, produce a
non-symmetricstochastic SM[27] as a result.

A trivial compact way to create arow stochasticSM from any kind of quantum SM
may be readily described by first constructing the diagonal matrixD, whose elements are
made by the sums of row (or column) SM elements:

D = Diag
(〈z1〉, 〈z2〉, . . . , 〈zN 〉

)
, (6)

and then producing the matrix product

S = D−1Z. (7)

In the same manner, acolumn stochasticSM will be defined straightforwardly as
the transpose of the previous definition:

ST = ZD−1,

where one must take into account the symmetrical structure of the original SM. The term
stochastic SM(SSM) can be used as a generic reference to both SSM kinds, defined so
far.

The row {〈sI |} or column{|sI 〉} SSM partition vector sets, being associable to a
collection of discrete probability distributions, may be even better connected to the DF
tag set{ρI } of the original QOS, than the equivalent rows or columns of the attached
SM Z. In fact, they can be used as another alternative tag set part, which, when combined
with the microscopic quantum systems belonging to the object set{ωI } of the original
QOS, finally produce a new attached tagged set made of discrete QO, which can be
called aDiscrete Stochastic QOS(DSQOS).

For instance, taking into account the same considerations as those used before
when previously discussing the nature of the SM rows, the connection between the orig-
inal QOS elements with the SSM rows

(ωI ;ρI )↔
(
ωI ; 〈sI |

) ∀I
defines the elements of a DSQOS.
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4.2. Inward symmetrisation of stochastic quantum similarity matrices and stochastic
quantum similarity indices

The elements of the DSQOS tag set can be directly used as QO discrete descriptors,
admitting the actual implications

∀I ωI ↔ ρ1↔ 〈sI |,

in a similar manner as it has been previously discussed, when dealing with the signifi-
cance and the interpretation of the nature of the SM elements. The unique problem lies in
the fact that, on the contrary to the SMZ, the row (or column) SSMS is not symmetric.
However, this does not constitute a restrictive problem when alternative manipulations
of the DSQOS are envisaged, and even has other possible uses, not contained in the
symmetric QO descriptor structures.

4.2.1. Partial order and SQSM
A partial order [1] over this kind of DSQOS can be easily associated to the char-

acteristic mathematical structure of SSM. In this manner, the possibility to construct the
non-symmetric SSMS from a simple manipulation of the symmetric SMZ completes
QSM theory in a general and elegant way, providing QOS with a partial ordering for-
malism.

Because of the usual symmetric structure of the associated DQOS SM, the pos-
sibility of transforming DQOS into posets was still lacking in the quantum similarity
theoretical structure. Thus, as a consequence of the discussion performed up to now,
QOS can be transformed into DQOS, and even more easily into DSQOS: there a poset
structure can be studied and employed, due to the non-symmetrical structure of the tag
set SSM. The broad characteristic features of posets defined through QSM SSM will
certainly be studied elsewhere. Here, some particular linear algebra aspects of the poset
structure will be only considered.

4.2.2. Inward matrix product symmetrisation
In addition to the classical symmetrisation techniques, which customarily use the

sum or the classical product of the studied matrix and its transpose [28], there for the
same purpose can be also described a simpler algorithm, involving aninward matrix
product(IMP) [20,29,30].

An IMP between two known matrices,A andB, bearing the same arbitrary dimen-
sion, can be defined without problems as another matrixC, with the same dimension
form; see appendix B for more details. Using(n × m) matrices as a typical but quite
general example, the following straightforward algorithm can be designed for the IMP
definition:

C = A ∗ B �⇒ ∀i, j cij = aij bij . (8)
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IMP possesses a standard set of properties, which have already been described in detail
and for this reason will not be repeated here; see [12,29,30] and also appendix B. Thus,
it is trivial to realise that the commutative IMP

R = ST ∗ S = S ∗ ST (9)

of the stochastic matrixS with its transposeST produces a symmetric matrix as a result,
that is,R = RT.

4.2.3. Stochastic similarity indices
The symmetric matrixR, as defined above, could be used in the same way as the

original SM,Z. However, unit homogenisation with respect to the initial SMZ makes
preferable to employ the IMP square root (see appendix B.3 for more details), computed
over the symmetric IMP as defined in equation (9), which is in turn readily constructed
by the algorithm:

Q = R[1/2] �⇒ ∀i, j qij = √rij . (10)

In Fortran 95 language, all the operations starting with the known SMZ and lead-
ing to the computation of the matrixQ can be immediately written in an extremely sim-
ple and short code. See [31] for instance and [20] for some pieces of code as illustrative
examples. See also appendix B for more details on IMP powers and functions.

4.2.4. Relationship between stochastic quantum similarity indices and Carbó index
One can also consider the new symmetric matrixQ as holdingStochastic Quantum

Similarity Indices(SQSI).
It is worthwhile to analyse, at this point, how the new kind of SQSI may be related

to previous well-definedquantum similarity indices(QSI), which, as the so-called Carbó
index [25,26], are present in the literature since a long time ago.

An expression of the elements of matrixQ, as defined in equation (10), in terms of
the original symmetric SM, leads to the equality sequence:

qij = √rij = √sij sji =
√
zij zji

〈zi〉〈zj 〉 =
zij√〈zi〉〈zj 〉 , (11)

which resembles the Carbó similarity index [25,26], when observing its expression in
continuous form, as can be studied below. The so-called Carbó similarity index is de-
fined over the involved QO DF tag couples, using the associated QSM SM elements, and
is written as

κij = zij√
ziizjj

(12)

This discussion does not complete at all the possible ways any QSM SM can be
transformed into a QSI matrix. When discussing below in section 6 the possible transfor-
mations of the QQSAR fundamental equation, a related index to the SQSI one described
in equation (11) will appear as a natural consequence of the stochastic scaling of the SM.
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5. Stochastic quantum similarity matrices eigensystems

After defining the row and column SSM, as in the preceding paragraphs, for the
purpose to study approximate solutions of the QQSAR fundamental equation (see, for
example, [20,30] and appendix C), it appears to be very interesting to analyse the eigen-
systems of such matrices and their possible relationships. In fact, this subject constitutes
the core of the present paper.

Suppose known the eigensystem equation of the row SSM as defined in equa-
tion (7), which can be written in the following way:

SC = C�, (13)

where the diagonal matrix� contains the eigenvalues of the row SSMS. Because of
the fact that the SSM is non-symmetric, then the eigenvector matrixC is no longer
orthogonal. However, equation (13) can be easily related to a symmetric eigensystem
equation. Remembering the structure of the row SSM, the secular equation (13) can be
also explicitly written as

D−1ZC = C�. (14)

Now, employing the definite positive nature of the elements of the diagonal matrix

D = Diag
(〈zI 〉),

then it is easy to build up the square root real diagonal matrix

D1/2 = Diag
(〈zI 〉1/2),

as well as its inverse

D−1/2 = Diag
(〈zI 〉−1/2).

Both diagonal square roots can be used to transform equation (14) into the new secular
equation

D−1/2ZC = D1/2C�,

which in turn can be written in a symmetric form as

D−1/2ZD−1/2D1/2C = D1/2C�.

Thus, using the associative property of the matrix product, one can rewrite the previous
equation as

QU = U�, (15)

where the following definitions have been used:

Q = D−1/2ZD−1/2 and U = D1/2C.

However, by construction, the matrixQ is symmetric, and consequently, the eigenvector
matrix U is always orthogonal. The matrixQ, as defined for eigensystem equation
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transformation purposes, becomes the same as the already defined symmetric matrix
of equations (10) or (11). The eigensystem (15) is, thus, easily solvable by means of
standard diagonalization methods [23,24]. Moreover, its eigenvalues are the same as
those initially sought for in equations (13) or (14), while the initial row SSM eigenvectors
are readily obtained from those of the symmetric matrixQ forming the unitary matrixU:

C = D−1/2U.

With respect to the column SSMST, a similar eigensystem can be considered
known:

STX = X�, (16)

where the diagonal matrix� has the ordered set of eigenvalues corresponding to the non-
orthogonal eigenvector matrixX. The equation (16) eigensystem can be now written,
owing to the structure of the column SSM, as

ZD−1X = X� (17)

and subsequently transformed into the equivalent symmetric structure as the one associ-
ated to equation (15). This can simply be done taking into account the existence of the
diagonal square root matrices and writing first:

ZD−1/2D−1/2X = X�,

followed by multiplying both sides on the left by the inverse square root diagonal matrix.
Then, in this way, equation (15) is obtained again

D−1/2ZD−1/2D−1/2X = D−1/2X�.

However, while it is obviously evident that the eigenvalue matrix of the eigensystem (16)
coincides with these of equations (14) and (15), that is,� = �, the actual eigenvector
matrix is related with the orthogonal matrixU by means of the relationship

X = D1/2U.

So the row and column SSM possess the same eigenvalues, coinciding with those of the
symmetric matrixQ, and their eigenvectors are related through the square root of the
diagonal stochastic transformation matrixD to the orthogonal matrixU made of theQ
matrix eigenvectors. Both non-orthogonal eigenvector matrices are related by a simple
equation, owing to their construction from the orthogonal matrixU:

X = DC.

All the reported properties for the secular equations of SSM present very similar charac-
teristics to the relationships found between the components of the secular equations of a
matrix and its transpose, see, for instance, [23].
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The properties of the secular equations attached to the two kinds of SSM can be
employed to further study the structure of both matrices. Therefore, the spectral decom-
position of the row SSM can be easily written in the following terms:

S = C�C−1 = D−1/2U�UTD1/2 = D−1/2QD1/2,

as well as the following decomposition is straightforwardly associated to the column
SSM:

ST = X�X−1 = D1/2U�UTD−1/2 = D1/2QD−1/2.

It is shown in such a manner how the non-symmetric nature of the SSM does not
interfere with the possible use of symmetric matrix diagonalization procedures.

6. QQSAR fundamental equation and stochastic quantum similarity matrices

It is easy to construct from the QSM framework the QQSAR fundamental equation,
connecting any QOS SM with any QO property vector. Details can be found in [3–
9,20,30] and appendix C. The QQSAR fundamental equation is conveniently written as
a linear system:

Zw = π, (18)

where the SMZ is connected with a QO,experimentalproperty vectorπ , by means of a
vectorw, representing a discrete form of anunknownoperator, see also appendix C for
more details.

Equation (18) can be easily related with the corresponding SSM. Indeed, multi-
plying on the left by the stochastic diagonal matrix inverse transformation both sides of
equation (18), it is obtained:

D−1Zw = D−1π �⇒ Sw = p and p = D−1π .

In the same manner, the column stochastic matrix can intervene in equation (18),
just using the simple matrix algebra:

ZD−1Dw = π �⇒ STv = π and v = Dw.

These two previous transformations can be employed at the same time, producing a new
QQSAR fundamental equation, where a related matrix to the symmetric matrixQ is the
leading term:

D−1ZD−1Dw = D−1π �⇒ Av = p and A = D−1ZD−1.

While the matrixA, described above, being symmetric can be processed in the usual
manner to solve the QQSAR fundamental equation (see appendix D for additional de-
tails), the equations associated to the SSMS and ST must be analyzed using spectral
decompositions of the appropriate type, as previously discussed in section 5. For exam-
ple, if the QQSAR fundamental equation

Sw = p
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has to be solved, while preserving the intrinsic equation constraints inherent to the posi-
tive definite nature of their elements, as has been discussed in [20,30], the detailed pro-
cedure described in appendix D has to be followed. In this particular case, the adequate
IMP decomposition of the QQSAR fundamental equation can be used:

S=R ∗R and R= S[1/2],
w= x ∗ x and x =w[1/2],
p= q ∗ q and p = q[1/2].

So, an approximate solution of the fundamental QQSAR equation can be found solving
the unrestricted equation, which can be now written as

R ∗ x = q.

The resulting approximate unrestricted equation can be solved using the procedure out-
lined in appendix D, just taking into account that the IMP square root of the SSM can be
also written in terms of the SM, as it can be easily deduced that

R = D−1/2Z[1/2],

owing to the fact that

S = D−1Z �⇒ ∀i, j sij = d−1
ii zij �⇒ ∀i, j √sij = d−1/2

ii

√
zij .

In this manner, the role of the matricesD−1 andZ in the SSMS eigensystem, as pre-
viously discussed, is substituted by the IMP square rootsD−1/2 andZ[1/2], respectively.
That is, defining the auxiliary matrixT as

T = D−1/4Z[1/2]D1/4 = Q[1/4],

if the T eigensystem is built up, using the secular equation

TV = Vτ ,

whereτ is the diagonal eigenvalue matrix; then, the spectral decomposition of the ma-
trix R can be constructed by the non-symmetric matrix product

R = D−1/4VτVTD1/4.

So, in this case, the procedure described in appendix D can be applied with minimal
differences. The same can be said for the column SSM, with the logical changes in the
procedure.

7. Conclusions

There has been described how from SM made from QSM, non-symmetric SSM
can be constructed. The procedure for solving the QQSAR fundamental equation when
the descriptor matrix is symmetric can be easily extended into the SSM non-symmetric
case. This property appears from the fact that SSM eigensystems can be easily related to
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symmetric secular equations, just by performing simple matrix algebra manipulations.
In this manner row or column SSM appear as quite interesting candidates to be used
in QQSAR problems in order to find causal relationships between the unbiased and
universal QO descriptor structure contents and QO properties. Alternatively, the SSM
columns or rows can be also employed as QO descriptors in classical QSAR procedures
under principal component analysis statistical protocol.
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Appendix A. Definitions related to quantum similarity measures

For more details on the following definitions and concepts, see [9,10].

Definition A.1 (Tagged sets). Let us suppose known a given set, the object setS, and
another set, made of some chosen mathematical elements, which will be hereafter called
tags, forming a tag set,T . A tagged setZ can be constructed by means of the ordered
productZ = S × T :

Z = {∀θ ∈ Z | ∃s ∈ S ∧ ∃t ∈ T : θ = (s, t)}.
Definition A.2 (Quantum object, QO). A QO can be defined as an element of a tagged
set: quantum systems in well-defined states are taken as the object set part and the
corresponding DF constitute the tag set part.

Definition A.3 (Vector semispace, VSS). A VSS over the positive definite real fieldR
+

is a vector space with the vector sum part provided by a structure of Abeliansemigroup.

By an additive semigroup, an additive group without the presence of reciprocal el-
ements is understood here. All VSS elements can be seen as directed towards the region
of the positive axis hyperquadrant. It can be accepted if necessary thatnull elementsare
both included in the scalar field as well as in the VSS structure.

Definition A.4 (First-order electronic DF, eDF). The first-order eDF form, as expressed
within MO theory, can be defined by means of the linear combination:

ρ(r) =
∑
i

wi
∣∣ϕi(r)∣∣2. (A.1)

This MO eDF can be written in a general way, as a double sum of products of function
pairs, coupled with a set of matrix coefficients. See also appendix B.4 for more details.
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However, a simple matrix diagonalization, followed by a unitary MO basis set transfor-
mation, can revert DF to the formal expression in equation (A.1). The coefficient set
w = {wi} ⊂ R+, interpreted as MO occupation indices, corresponds to a collection of
positive real numbers. A unit norm convention can be adopted:∫

|ϕi |2 dr = 1 ∀i �⇒
∫
ρ(r)dr =

∑
i

wi

∫
|ϕi|2 dr =

∑
i

wi = 1,

and this results in considering the coefficient setw = {wi} as a discrete probability
distribution.

Definition A.5 (Convex conditions). By the term “convex conditions” applied to an
n-dimensional vector it is understood:

Kn(w) ≡
{

w ∈ Vn
(
R
+) ∧ ∑

i

wi = 1

}
.

The set of the vector elements,w = {wi}, can be used instead in the convex conditions
symbol, that is:

Kn
({wi}) ≡

{
∀i: wi ∈ R+ ∧

∑
i

wi = 1

}
.

The coefficients of a first-order eDF fulfill a set of convex conditions.

Definition A.6 (General quantum similarity measures). A general QSMG(
) can be
considered a positive definite multiple scalar product defined by a contractedν-direct
product of a QOS,T :

G(
) :
ν⊗

K=1

T → R
+.

This allows us to mixν DF {ρI (r), I = 1, . . . , ν} of the QOS withω PD operators, col-
lected into a set
 = {
K(r),K = 1, . . . , ω}, belonging to the same VSS, for example:

G(
) =
∫ [ ω∏

K=1


K(r)

][
ν∏
I=1

ρI (r)

]
dr,

where the coordinate vectorr shall be taken here as a general position vector.

Appendix B. Inward matrix product: Definitions, properties and examples

Fortran 95 contains as a built-in feature [31] the Hadamard, Schur or, perhaps bet-
ter to call it: inward matrix product(IMP). Such a matrix product is defined between
two matrix structures, belonging to the same matrix space. As IMP has been previously
used in several papers, related with quantum-chemical applications [20,29,30], it will be
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presented here as a first step to describe its connection with DF structure and generaliza-
tion. IMP is related to the DVS product structure, and as such can be seen as some sort
of generalization of diagonal matrices product to general matrix VS. Curiously enough,
IMP is scarcely referenced in the current literature, except on shy looking footnotes in a
few books (see, e.g., [32,33] for the definitions and [34] for the origins).

IMP can be widely used in quantum mechanics for various purposes. In this sec-
tion, some devoted pages are included, just to remark the simplicity of the concepts
which can be built up around it and the interesting problems where IMP can be em-
ployed.2

IMP can be defined in a simpler way than the classical matrix product, as the
associated structure mimics the matrix addition and the product of scalars. The next
definition tries to provide a general form of this matrix operation.

Definition B.1 (Inward matrix product, IMP). Consider any arbitrary hypermatrix space
over a fieldM (×n)(R). Let A, B ∈ M(×n). An IMP involving the hypermatrix pair
is a closed operation, resulting in a new hypermatrixP ∈ M (×n), and symbolized by
P = A ∗ B, whose elements are defined by the algorithm:

∀(i) p(i) = a(i)b(i).

Above, the elements of the involved hypermatrices are identified by means of an
index vector(i) ≡ (i1; i2; . . . ; ip). Thus, one can consider that the hypermatrix space
dimension is given by(×n) ≡ (n1 × n2 × · · · × np). The notation follows a previous
one, employed when dealing with NSS structures (see, e.g., [35–38]).

Having presented the simple definition of IMP, then some of the most interesting
properties and applications will be provided. IMP acts over hypermatrix spaces almost
as if hypermatrices where treated as a product of scalars. This attractive feature can be
employed in quantum chemistry computational problems, see, for example, [20,29,30],
as well as in the development of new theoretical structures, which can present the pe-
culiarity of being easily transferable to a high level programming language like For-
tran 95.

B.1. IMP properties

The following properties can be attached to the IMP defined over the elements of
an arbitrary hypermatrix spaceM (×n): IMP is distributive with respect to the matrix
sum, as well as associative, and commutative [29].

The interest in defining such a matrix product appears from the possibility to at-
tach to it the most usual features of a multiplicative composition rule. The following
properties can be attached to the IMP.

2 The term matrix or hypermatrix can be used indistinctly in reference to IMP manipulations.
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Let be:A,B,C, . . . ∈M (×n). IMP defined over them are:

(1) distributive with respect to matrix sum:A ∗ (B+ C) = A ∗ B+ A ∗C,

(2) associative:A ∗ B ∗C = A ∗ (B ∗ C) = (A ∗ B) ∗ C,

(3) commutative:A ∗ B = B ∗A.

From the inspection of these properties, it is easy to see that IMP can operate over
matrix spaces in the same way as indiagonal matrix vector spaces(DVS) the classical
matrix product acts.

B.2. IMP unit element and inverse

Also, an inward unit element exists, which can be called theunity matrix,
1 ∈M (×n), such that1 ∗ A = A ∗ 1 = A. Using the real multiplication unit it can
be defined as1 = {

1(i) = 1 ∀(i)}. The existence of an IMP inverse is subject to the
following important limitations imposed by the following definition:

Definition B.2 (IMP invertible matrices). IffA = {a(i)}∧∀(i): a(i) �= 0} thenA can be
called inwardly invertibleor regular. A new matrix defines the IMP inverse of a matrix
A: A[−1] = {a[−1](i)}, with elements, which are computed as follows:∀(i) a[−1](i) =
(a(i))−1. This definition produces the sequence of equalitiesA ∗A[−1] = A[−1] ∗A = 1.

These IMP properties are sufficient to define a commutative algebra over any ma-
trix vector space. One can refer to this kind of algebra asHadamardor Schur algebra.

B.3. IMP powers and functions

IMP powers of a given hypermatrixA are readily defined asA[p] = {a(i, j)p}. The
square bracket enveloping the exponent is used here to distinguish an IMP power from
the one defined involving classical products, as it has been previously used in the IMP
inverse definition. For example, wheneverZ = A ∗ A, then the matrixA can be also
considered as the IMP square root ofZ:

A = Z[1/2] �⇒ ∀i, j a(i, j) = √z(i, j).
IMP functions of a given hypermatrix are also easy to define:φ[Z] = {φ(z(i, j))}.

IMP algebra is tightly related to diagonal matrix computational algorithms and the above
definitions are the consequence of another shared isomorphic characteristic between
DVS and VS associated to an IMP.
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B.4. A quantum-chemical example

Under LCAO MO approach, the first-order density function (A.1) can be expressed
as a double sum over the AO basis set labels:

ρ(r) =
∑
µ

∑
ν

Pµν |µ〉〈ν|,

where{Pµν} are the elements of the charges–bond orders matrix and{|µ〉 = χµ(r)}
represents the AO basis set. Both matrix elements can be cast into a pair of arrays as

P = {Pµν} and X(r) = {Xµν(r) = |µ〉〈ν|}.
Then, a new hybrid matrix can be expressed as an IMP:

M(r) = P ∗X(r).

This allows obtaining the first-order DF simply as a sum involving all matrix elements
[35–38]:

ρ(r) = 〈M(r)〉 =∑
µ

∑
ν

Mµν(r).

Appendix C. Expectation values and fundamental QQSAR equation

When studying a quantum-mechanical system, the expectation value of some ob-
servableω, in a well-defined QO system state, can be written by means of the integral

〈ω〉 =
∫
W(r)ρ(r)dr, (C.1)

whereW(r) is an associated Hermitian operator to be determined for a given QOS, and
ρ(r) the system state density function.

On the other hand, the expression (C.1), from a QQSAR point of view, can be
interpreted as a scalar product [3–9,20,30,39], that is,

〈ω〉 = 〈W |ρ〉. (C.2)

Taking into account the unknown nature of the QQSAR operatorW(r), one can
consider that it can be decomposed as a product of the operator leading to the expecta-
tion valueWω(r), still unknown and to be determined, by a known PD weight operator,

(r, r0). Thus, the expectation value as presented in expression (C.1) can be written
now as

〈ω〉 = 〈Wω|
|ρ〉. (C.3)

This is the same as to transform equation (C.1) into the equivalent more general integral

〈ω〉 =
∫∫

Wω(r)
(r, r0)ρ(r0)dr dr0. (C.4)
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It is easy to see that the PD weight operator
(r, r0) can particularly be chosen as the
Dirac’s delta functionδ(r − r0), and, thus, in doing so, equation (C.1) is recovered.
In order to distinguish the expectation value general definition, as presented in equa-
tion (C.4), from the usual choice in equation (C.1), where the weight can be considered
a unit operator, the general integral (C.4) can be named as aweighted expectation value
integral expression. It is interesting to note that expression (C.4) has a formal structure
highly resembling the two-system QSM integral as given in equation (1).

It is only necessary to express the unknown operator of equation (C.4) in terms
of a DF basis set to arrive to the fundamental QQSAR equation. Now, whenever both
operator and DF in the integral (C.1) can be considered to belong to the same VSS, and
expressing approximately the unknown operator,Wω(r), as a linear combination of the
QOS tag set, acting as a basis,

Wω(r) ≈
∑
I

wIρI (r), (C.5)

a new relationship is obtained after substituting expression (C.5) in equation (C.4), while
taking into account the operator decomposition and the explicit expression of a QOA:

〈ωA〉 =
∑
I

wI

∫∫
ρI (r)
(r, r0)ρA(r0)dr dr0 =

∑
I

wI zIA(
). (C.6)

Admitting equation (C.6) holds for every QO in a given QOS, and that the SMZ, ob-
tained employing the weight operator
(r, r0), is symmetric, then an equivalent equa-
tion can be written in matrix form as

Zw = π, (C.7)

whereπ is a column vector containing the expectation values or the QO property of
interest andw is another column vector, containing the unknown coefficient set{wI } of
the operator expression (C.5). At the light of all the discussed aspects of the problem, it
seems that equation (C.7) can be named from now on thefundamental QQSAR equation.

Appendix D. Quantum QSAR modeling

The procedure used here for dealing with the QQSAR model is based on IMP and
the PD nature of the quantum SM or SI, which can be employed to construct it. The
possibility to transform the experimental activity data into a PD vector is also taken into
account3. The whole problem has been studied in detail from various points of view
[3–9,14–17,40–45], so it will be just outlined here.

As discussed in the previous section, the QQSAR models can be written as a matrix
equation like expression (C.7), involving the chosen SM and the QOS experimental data

3 Many QSAR properties possess intrinsically PD values or can be scaled as well as origin shifted to fulfill
this property.
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to be described. All known matrices belong to some VSS of the appropriate dimension.
In order to keep the model describing PD property values, the solution could be forced

to be an element of some VSS too. So, using the symbolA
∗
> 0 to indicate that a

chosen matrixA has all its values defined inR+, that is, to represent in a shorter form
the propertyA = {aij } ⇒ ∀i, j aij ∈ R+; then the constrained QQSAR model can be
written

Z
∗
> 0 andπ

∗
> 0 : Zw = π �⇒ w

∗
> 0. (D.1)

D.1. Fundamental QQSAR equation approximate solution

In order to take into account the implication, which can be considered as a con-
straint, imposed to the solutions to be found when solving the equation (D.1) linear
system, an algorithm can be easily designed as follows.

It is obvious that if the PD restriction on the vectorw holds, there shall exist three
real matrices,T, x andp, which can be computed as the IMP square root of the system
matrices, that is,T = Z[1/2], x = w[1/2], p = π [1/2], in the same fashion as this IMP ma-
trix power was defined in appendix B.3. So, equation (D.1), bearing the corresponding
constraint on the unknowns’ vector, can be written as

(T ∗ T)(x ∗ x) = (p ∗ p). (D.2)

This suggests the possibility to construct an alternative approximate system. Indeed, just
exchanging the sites of classical and inward matrix products on the left of equation (D.2)
it is obtained:

(Tx) ∗ (Tx) = (p ∗ p), (D.3)

leading to the approximate reduced system

Tx = p, (D.4)

which does not need any restriction on the unknown vector elements and, thus, can be
finally solved, considering the approximate nature of the solution yielding the QQSAR
model.

This way, chosen here in order to achieve an approximate solution of the fundamen-
tal QQSAR equation, takes the following path. First, the eigensystem of the symmetric
matrix T is obtained, and an approximate spectral decomposition of this matrix is used
employing a cutoff valueε on the eigenvalues, in order to get rid of numerical noise.
This can be written explicitly using a logical Kronecker’s delta [35–38] as

T ≈
∑
i

δ(τi > ε)τi |i〉〈i|, (D.5)

where{τi} is the spectrum and{|i〉} the eigenvector system of the matrixT. Then, the
same can be done for the evaluation of an approximate inverse:

T−1 ≈
∑
i

δ(τi > ε)τ
−1
i |i〉〈i|. (D.6)
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Finally, in this manner the approximate solution can be written using

x ≈ T−1p =
∑
i

δ(τi > ε)τ
−1
i |i〉〈i|p〉, (D.7)

so, the approximate solution of the original system (D.1),aw, with the adequate con-
straint, is simply computed using the inward productaw = x ∗ x. This is sufficient to
obtain a set of estimated property values:

aπ = Z(aw). (D.8)

As discussed before, this algorithm can be employed over any constrained linear
system problem, so the matrixZ may be used directly, as well as any symmetric manip-
ulation of the stochastic transformations, like the one present in equation (9).
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